Abductive learning of quantized stochastic processes with probabilistic finite automata.

نویسندگان

  • Ishanu Chattopadhyay
  • Hod Lipson
چکیده

We present an unsupervised learning algorithm (GenESeSS) to infer the causal structure of quantized stochastic processes, defined as stochastic dynamical systems evolving over discrete time, and producing quantized observations. Assuming ergodicity and stationarity, GenESeSS infers probabilistic finite state automata models from a sufficiently long observed trace. Our approach is abductive; attempting to infer a simple hypothesis, consistent with observations and modelling framework that essentially fixes the hypothesis class. The probabilistic automata we infer have no initial and terminal states, have no structural restrictions and are shown to be probably approximately correct-learnable. Additionally, we establish rigorous performance guarantees and data requirements, and show that GenESeSS correctly infers long-range dependencies. Modelling and prediction examples on simulated and real data establish relevance to automated inference of causal stochastic structures underlying complex physical phenomena.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Links between multiplicity automata, observable operator models and predictive state representations: a unified learning framework

Stochastic multiplicity automata (SMA) are weighted finite automata that generalize probabilistic automata. They have been used in the context of probabilistic grammatical inference. Observable operator models (OOMs) are a generalization of hidden Markov models, which in turn are models for discrete-valued stochastic processes and are used ubiquitously in the context of speech recognition and b...

متن کامل

Learning Probabilistic Residual Finite State Automata

We introduce a new class of probabilistic automata: Probabilistic Residual Finite State Automata. We show that this class can be characterized by a simple intrinsic property of the stochastic languages they generate (the set of residual languages is finitely generated) and that it admits canonical minimal forms. We prove that there are more languages generated by PRFA than by Probabilistic Dete...

متن کامل

Spectral Learning from a Single Trajectory under Finite-State Policies

We present spectral methods of moments for learning sequential models from a single trajectory, in stark contrast with the classical literature that assumes the availability of multiple i.i.d. trajectories. Our approach leverages an efficient SVD-based learning algorithm for weighted automata and provides the first rigorous analysis for learning many important models using dependent data. We st...

متن کامل

Learning Classes of Probabilistic Automata

Probabilistic finite automata (PFA) model stochastic languages, i.e. probability distributions over strings. Inferring PFA from stochastic data is an open field of research. We show that PFA are identifiable in the limit with probability one. Multiplicity automata (MA) is another device to represent stochastic languages. We show that a MA may generate a stochastic language that cannot be genera...

متن کامل

Learning Probabilistic Finite Automata

Stochastic deterministic finite automata have been introduced and are used in a variety of settings. We report here a number of results concerning the learnability of these finite state machines. In the setting of identification in the limit with probability one, we prove that stochastic deterministic finite automata cannot be identified from only a polynomial quantity of data. If concerned wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 371 1984  شماره 

صفحات  -

تاریخ انتشار 2013